36 research outputs found

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Automating the mean-field method for large dynamic gossip networks

    Get PDF
    We investigate an abstraction method, called mean- field method, for the performance evaluation of dynamic net- works with pairwise communication between nodes. It allows us to evaluate systems with very large numbers of nodes, that is, systems of a size where traditional performance evaluation methods fall short.\ud While the mean-field analysis is well-established in epidemics and for chemical reaction systems, it is rarely used for commu- nication networks because a mean-field model tends to abstract away the underlying topology.\ud To represent topological information, however, we extend the mean-field analysis with the concept of classes of states. At the abstraction level of classes we define the network topology by means of connectivity between nodes. This enables us to encode physical node positions and model dynamic networks by allowing nodes to change their class membership whenever they make a local state transition. Based on these extensions, we derive and implement algorithms for automating a mean-field based performance evaluation

    SPOT: Open Source framework for scientific data repository and interactive visualization

    Get PDF
    SPOT is an open source and free visual data analytics tool for multi-dimensional data-sets. Its web-based interface allows a quick analysis of complex data interactively. The operations on data such as aggregation and filtering are implemented. The generated charts are responsive and OpenGL supported. It follows FAIR principles to allow reuse and comparison of the published data-sets. The software also support PostgreSQL database for scalability

    Transducer degrees: atoms, infima and suprema

    Get PDF
    Although finite state transducers are very natural and simple devices, surprisingly little is known about the transducibility relation they induce on streams (infinite words). We collect some intriguing problems that have been unsolved since several years. The transducibility relation arising from finite state transduction induces a partial order of stream degrees, which we call Transducer degrees, analogous to the well-known Turing degrees or degrees of unsolvability. We show that there are pairs of degrees without supremum and without infimum. The former result is somewhat surprising since every finite set of degrees has a supremum if we strengthen the machine model to Turing machines, but also if we weaken it to Mealy machines

    Distributed Branching Bisimulation Minimization by Inductive Signatures

    Get PDF
    We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no tau-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms
    corecore